
FelineTek Public API

Felinetek Public API
Specification

Version 1.0.1

 
Prepared by Panos Hadjikomninos, FelineTek

Last Revision: 25 March 2010

© 2009 FelineTek. All rights reserved. FelineTek Public API

1. Introduction
1.1. Purpose

Documentation of the Public Domain Felinetek (FT) classes distributed
under LGPL license. For more information see:

http://www.felinetek.com/fttoolbox

1.2. General Usage Instructions

To use any of the 3 classes included in this document, you must
initialize FTToolBox and FTCustomization, even though you may not
be subsequently using one or both of them (you may only be using
FTAsyncRequest).

You also must add the following parameter in info.plist in order to use
FTCustomization: FTCustomizationString mycomp

This implies you should have a mycomp.lproj localization directory with
its own Localizable.strings file.

We suggest placing the initialization code in your AppDelegate code,
inside the method: didFinishLaunchingWithOptions

Example
���

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions {
 ...
 ! [FTCustomization FTinitializeCustomization]; !  

 ! [FTToolBox FTinitializeLog:YES atLevel:FT_DEBUGGING];  

...

© 2009 FelineTek. All rights reserved. FelineTek Public API

2. Class Description

Class FTToolBox

This is effectively a “static” class. By “static” we mean that no class
variables or methods are used. The (few) variables needed are defined
as static, and all the methods defined for this class are class (+)
methods.

Therefore it is meaningless to create objects to this class, and any
initialization necessary before use, is provided by the class method
FTinitializeLog. This method must be used prior to using this class,
preferably from the application delegate.

The FTToolBox class is used for saving logging information for
debugging purposes, during an application run. The logging process is
enhanced using a few usefull concepts:

permanent logging statements 
enhanced logging output 
different severity logging levels 
threshold-level may be set both statically & dynamically both crash-log
and live-log

Lets examine these concepts in more detail :

1. Permanent Logging Statements

This class has been written to solve the problem of temporary logging
statements for debugging purposes.

These statements have to be removed or commented out after
debugging is complete, but may be needed later as more or
unexpectedissues are found: Now the programmer may need to re-enter
or uncomment the same statements.

© 2009 FelineTek. All rights reserved. FelineTek Public API

The FT_LOGG function solves these problems, as it may be left
permanently inside the code. Logging or not its contents are depended
on 2 factors:

• If the app is ready for the app store, the FTInitializeLog parameter
debug_flag may be set to NO, effectively removing all logging (until its
changed to YES again)

• The threshold_level may be set statically (via FTInitializeLog) to a
different value, thus effectively logging only FT_LOGG calls of severity
level higher than the threshold (i.e. lower numeric value) , and omitting
all other FT_LOGG calls. Thus we may only elect to log calls with
FT_ERROR or higher level of severity, which are very few

• The threshold_level may be changed dynamically to a different
(typically lower level) to effectively log more FT_LOGG calls.

2. Enhanced Logging Output

Logging automatically include the names of the class and the method
were the FT_LOGG call occured.

3. Different Severity Logging Levels

Lower levels have higher severity, and vice versa. If the logging level is
set to FT_WARNING, only FT_LOGG calls with levels 0..3 will be
logged.

#define FT_UNRECOVERABLE 0

#define FT_CRITICAL 1

#define FT_ERROR 2

#define FT_WARNING 3

#define FT_INFORMATION 4

#define FT_LOGGING 5

#define FT_DEBUGGING 6

#define FT_ANALYTIC 7

© 2009 FelineTek. All rights reserved. FelineTek Public API

#define FT_VERBOSE 8

FT_VERBOSE should be used sparingly for heavy logging (such as
inside loops etc.). You should very rarely -- and for very short periods --
have to set your threshold level to FT_VERBOSE as this may slow the
application to a crawl.

4. Threshold Levels may be set both Statically & Dynamically

The logging threshold level may be set statically and changed
dynamically:

•The threshold_level may be set statically (via FTInitializeLog) to a
different value, thus effectively logging only FT_LOGG calls of severity
level higher than the threshold (i.e. lower numeric value) , and omitting
all other FT_LOGG calls. Thus we may only elect to log calls with
FT_ERROR or higher level of severity, which are very few

• The threshold_level may be changed dynamically to a different
(typically lower level) to effectively log more FT_LOGG calls.

Avoid setting your threshold level to FT_VERBOSE as this may slow the
application to a crawl.

5. Both Crash Log and Live Log

FTgetLogAsString returns the live log from the current application run.

FTgetCrashLogAsString returns the live log from the prior application
run, wether the application has crashed or not. Therefore this is not
necessarily a crash log. But if used judiciously by the user (is recovered
immediately after he restarts the app , after a crash) you have effectively
a “crash- log”, i.e. a log of the “crashed” prior run of the app.

Static Methods

+ (void) FTinitializeLog: (BOOL) debug_flag atLevel: (int)
threshold_level 
Method called at the first start of the application in the appDelegate.m
with the default method: applicationDidFinishLaunchingWithOptions.

© 2009 FelineTek. All rights reserved. FelineTek Public API

(BOOL) debugFlag YES when you want debug to appear, be careful just
before setting the application on the appStore you have to set this
variable to NO.

(int) threshold_level Statically set threshold level.

+ (NSString *) FTsetLogSeverity: (int) threshold 
Dynamically set the logging threshold  
(int) threshold_level Dynamically set threshold level (resets static or prior
value).

+ (NSString *) FTgetLogAsString

Returns the live log from this application run.

Returns: 
(NSString *) The live-log (application current run).

+ (NSString *) FTgetCrashLogAsString

Returns the live log from the prior application run, wether the application
has crashed or not. Therefore this is not necessarily a crash log. But if
used judiciously by the user (is recovered immediately after he restarts
the app , after a crash) you have effectively a “crash-log”, i.e. a log of the
“crashed” prior run of the app.

Returns: 
(NSString *) The crash-log (application prior run).

Main Logging Function
FT_LOGG(FT_LEVEL, format, …);

 
int level The level to be associated with this logging entry

NSString * format The format of the string to display

... format arguments The format arguments

Example
+(void) get {
NSString *requeststr = [request URL] absoluteString];
FT_LOGG(FT_DEBUGGING,@"URL = %@",requeststr);
...

© 2009 FelineTek. All rights reserved. FelineTek Public API

Output:

FT_DEBUGGING(6):: FTAsyncRequest, get:: !URL = http://www.4gsecure.fr/test.php!

© 2009 FelineTek. All rights reserved. FelineTek Public API

Class FTCustomization

This is effectively a “static” class. By “static” we mean that no class
variables or methods are used. The (few) variables needed are defined
as static, and all the methods defined for this class are class (+)
methods.

Therefore it is meaningless to create objects to this class, and any
initialization necessary before use, is provided by the class method
FTinitializeCustomization. This method must be used prior to using
this class, preferably from the application delegate.

The FTCustomization class is based on apple’s bundle customization
primitives using localizable.strings files. But the process is enhanced
and made easier with a few more advanced concepts:

localization sequence  
cross data organization  
incomplete Localizable.strings files 
int, bool, float, UIColor & UIImage entries, in addition to Strings
compatibility with Android

Lets examine these concepts in more detail :

1. Localization Sequence

A sequence of “reads” determines the customization of each string, for
example :

en.lproj --> fr.lproj --> ubiqus.lproj

The string localization outcome can change many times as the result
may be rewritten by each file. The last outcome remains, so in the
sequence above a later file has precedence over a previous one.

The first localization directory in the sequence is almost always
“hardcoded” as en.lproj.

The second localization directory is the one that corresponds to the
telephone language, so if you your iPhone is in French the 2nd directory
in the sequence if fr.lproj. You may want the user of the application to
be able to change the language of the application without changing the

© 2009 FelineTek. All rights reserved. FelineTek Public API

language of the telephone (say, by clicking to an English flag inside the
application.

In this case you can use the class function FToverrideCustomization :
(NSString *) lang to override the second language in the sequence
dynamically. If you call

[FTcustomization FToverrideCustomization:@”en”]

the sequence above changes to : en.lproj --> en.lproj --> ubiqus.lproj

Finally the 3rd file in the sequence is determined by setting the
FTCustomizationString property in the info.plist file. In ther above case
we would have the following entry in info.plist:

FTCustomizationString ubiqus

This FTCustomizationString entry in info.plist, as well as the FTinitializeCustomization
call are mandatory in order to use this class.

2. Cross Data Organization

We may be organized on 2 vertical types of customization for each
project:

1. Customization according to language

! Here we should have allmost all strings of the project in different
languages under the language directories en.lproj, fr.lproj, de.lproj etc.

2. Customization according to customer. 
! Here we should have colors, images and other project parameters (of
type int, float etc)

under the customer directory (ubiqus.lproj).

In the same project we may have different customers (ubiqus.lproj,
customer2.lproj, generic.lproj etc.), in case the same project may be
re-marketed to different customers. We may equally have different
themes (such as gray.lproj, red.lproj). To change the project to a
different customer or theme, all we have to do is change
FTCustomizationString and rebuild the project.

© 2009 FelineTek. All rights reserved. FelineTek Public API

Thus we can have the same project customized with different
customer logos, colors etc, and make different builds as necessary.

3. Incomplete Localizable.strings files

Under Apple’s localization paradigm the Localizable.strings files must be
complete, ie the fr.lproj file must contain all the strings necessary to the
French localization.

With FTCustomization, you should always put all your strings in English
(which is kind of a universal language) in the en.lproj Localizable.strings
file.

• If your phone is in French but an fr.lproj directory does not exist, the
en.lproj entries will be used instead (as they come first in the
localization sequence). 
• If fr.lproj exists, but a specific string is not contained therein, then the
en.lproj string will be used instead (again, as it comes first in the
localization sequence).

Example
en.lproj:

"CancelString" = "Cancel";
"OKString" = “OK";

fr.lproj:

"CancelString" = "Annuler";
// “OKstring” is absent //

Customization result:

(Device language is French)

 ! ! FTCustomString(@"CancelString") returns @"Annuler"

 ! ! FTCustomString(@"OKString") returns @"OK"  

© 2009 FelineTek. All rights reserved. FelineTek Public API

(Device language is English)

 ! ! FTCustomString(@"CancelString") returns @"Cancel"

 ! ! FTCustomString(@"OKString") returns @"OK"  

4. A variety of localizations

A variety of localizations is available:

• string

• int

• float

• BOOL

• UIColor

• UIImage

 
Example:

"CancelString" = "Cancel";
"PINminimumLength" = "4";
"PINmaximumLength" = "8";
"isPINrequired" = "YES";
"TimeIntervalInSeconds" = "0.8";
"TabBarColor" = "92,66,134,54";
"SearchImage" = "search.png";

5. Compatibility with Android

A set of Java classes are provided that make it possible to use the same

x.lproj/Localizable.strings

directory structure on Android or any other Java based environment. 
This means you can just copy your files from one environment to
another and reuse them.

© 2009 FelineTek. All rights reserved. FelineTek Public API

Static Methods

+ (void) FTinitializeCustomization 
Initializes the “static” class based on the value FTCustomizationString in
the info.plist file.

 • You must have an FTCustomizationString entry in the info.plist file.  

 • You must call this function, before using this class, preferably in
the didFinishLaunchingWithOptions function of your app delegate

 
The localization sequence established by this call is :  
en.lproj --> fr.lproj --> custom.lproj  
where custom is the value of your FTCustomizationString property.

 
+ (void) FTinitializeCustomization : (NSString *) lang 
Same as the previous call, only we use lang (say “fr”) instead of “en” as
the default 1st sequence entry. Avoid using this call, as we always
want “en” to be the base.

 
(NSString *) lang The “base” language to be used first in the localization
sequence.

The localization sequence established by this call is :  
lang.lproj --> fr.lproj --> custom.lproj

 
+ (void) FToverrideCustomization : (NSString *) lang  
Dynamically override the device language as the 2nd language in the
localization sequence,.

 
(NSString *) lang The “overriding ” language to be used as the 2nd
language in the localization sequence.  
The localization sequence established by this call is :  

© 2009 FelineTek. All rights reserved. FelineTek Public API

en.lproj --> lang.lproj --> custom.lproj

+ (NSString *) FTdeviceLanguage

Returns the language the device is set to.

Returns: 
(NSString *) The device language such as “fr”.

+ (NSString *) FTdefaultLanguage

Returns the language the device is set to. Normally this is “en”.

Returns: 
(NSString *) The default language normally “en”.

+ (NSString *) FToverrideLanguage

Returns the language that overrides the device language for
customization.

Returns: 
(NSString *) nil if not overriden.

Functions

UIColor * FTCustomColor(NSString * str);

UIImage * FTCustomImage(NSString * img);

NSString * FTCustomString(NSString * str);

float FTCustomFloat(NSString * str);

int FTCustomInt(NSString * str);

BOOL FTCustomBool(NSString*str);

© 2009 FelineTek. All rights reserved. FelineTek Public API

Class FTAsyncRequest

This is a simple class for asynchronous GET and POST connections.

Properties
int timeout; // If not set the default value is 24 seconds.

NSStringEncoding encoding; // If not set the default value is NSUTF8StringEncoding.

NSString*contentType; // If not set the default value is "text/plain; charset=utf-8".

Methods

- (id) initWithUrl: (NSString *) url delegate: (id) delegate onSuccess:
(SEL) success onFailure: (SEL) failure

Initialization method

(NSString *) url (id) delegate

(SEL) success

(SEL) failure

Returns: (id)

- (void) getAsynchronously Start an asynchronous GET.

The HTTP URL to connect to.

The delegate, the object on which methods success and failure will be
called.

The selector that will be called after the asynchronous connection has
successfully completed. The selector must have one argument of type
(NSData *) that contains the data retrieved via the asynchronous call.

The selector will be called if the asynchronous connection fails. The
selector must have one argument of type (NSNumber *) that contains
the error code for the failure.

A pointer to self, as this method is an init replacement.

© 2009 FelineTek. All rights reserved. FelineTek Public API

- (void) postAsynchronously: (NSData *) data Start an asynchronous
POST. 
(NSData *) data The data to post.

Example

rec = [[FTAsyncRequest alloc] FTinitWithUrl:@"http://
services.project.com/GetProfil/"
delegate:self onSuccess:@selector(successAction:)
onFailure:@selector(failAction:)];
rec.contentType=@"application/json; charset=utf-8";
[rec setTimeout:15];
NSString * str = [NSString stringWithString:@"{\"userFirstName\":
\"Boris\",
\"userLastName\":\"OUDET\"}"];
[rec FTpostAsynchronously:[str
dataUsingEncoding:NSUTF8StringEncoding]];

© 2009 FelineTek. All rights reserved. FelineTek Public API

